統計學: 新奧爾良擲硬幣悲慘戰果0-11是多麼不尋常?
各位,
除了電子組裝產能、焊膏及焊錫預成型應用及其他電子組裝關心外,你們中很多人對我的瞭解限於我是個教統計學的老師並且是個終身的數學書呆子。因此,當好朋友Rick Short讓我意識到在這一季新奧爾良聖徒足球隊擲硬幣戰果為0-11時,我對此事產生了興趣。 有人自然會問道,這個結果是如何的不尋常啊?
假設一枚硬幣,每一面的輸贏概率均等,各位50%。 連續輸2次的概率為0.5 x 0.5 = 0.25。在前11次投擲中連續輸11次的概率為0.5^11= 0.00048828125。或大約等於文章中指出的比例2000:1(1/0.00048828125 = 2048)。哇!看起來真不尋常。然而,有32支足球隊,但這一切僅降臨到一支足球隊。因此今天這一切發生在一支足球隊的可能性究竟是什麼呢?這樣的計算有點過於複雜。最容易的計算方式即為問問題: 這個事件不發生在其他任何球隊的可能性又是什麼呢?
任何球隊在前11次投擲中不連續輸11次的概率為1-0.00048828125 =0.99951171875. 因此32支球隊中沒有一支球隊連續輸11次的概率為0.99951171875^32=0.98449268023. 至少一支球隊可能連續輸11次的概率為1減去剛才得出的數字或1-0.98449268023= 0.015507319766或大約為1.55%。這個概率仍然很低。但是如果我們觀察50個賽季,結果又是怎麼樣的呢?
經過50個賽季沒有球隊連續輸前11次擲硬幣的概率為0.98449268023^50 = 0.45774601688。因此,50個賽季32場團體聯賽,沒有球隊連續輸前11次擲硬幣的概率為45.77%,或者至少一支球隊輸前11次擲硬幣的概率為54.23%。由於這些幾率接近50/50,那麼在15年內聖徒隊的擲硬幣損失串為50年一遇的事件。
本文繼續敍述:
“當聖徒隊為7-3並且在NCF南部區獨佔鰲頭,儘管每次出現的時間很短暫,這卻應該是50-50的命題,硬幣投擲的統計學,——是的,他們確實真真正正的存在——依照LLC統計資料顯示, 本賽季歷時10周期間,NFL橄欖球隊賽成功贏得了當時賽前令人異常興奮的52.1%的預賽成績。
當NFL改變規則允許球隊在下半場以擲幣來為下半場賽事做出選擇的時候,這便與自2008賽季開賽以來,投幣‘勝利’吻合比賽勝利資料中所顯示的52.6%相一致”
如有興趣,我將看到我可以計算這一明顯的擲硬幣贏得2.6%優勢的統計資料。我猜想從統計學的角度觀察偏差是非常明顯的。
注釋: 很多讀者不經要問為什麼我的答案小數位後保留這麼多位。 經驗告訴我 為被錯誤包圍的非常高地勢力(32及之後的50)添加資料得以演示,所達到的效果是非常好的。此外,注意到我經常說“前11此擲硬幣”。16次投擲供連續得到11此,這個資料是偏高的。
歡呼,
Dr. Ron
Translation powered by Avalon Professional Translation
Connect with Indium.
Read our latest posts!